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RELAXATION-INDUCED SUPPRESSION OF VORTEX DISTURBANCES

IN A MOLECULAR GAS

UDC 532.5:532.517.4Yu. N. Grigor’ev1 and I. V. Ershov2

The influence of thermal excitation on a finite-amplitude vortex disturbance in a shear flow of a
molecular gas is studied in a model problem. The evolution of such vortex structures is typical of
both the nonlinear stage of the laminar–turbulent transition and for developed turbulence. Since the
excitation level was assumed to be comparatively low, full Navier–Stokes equations for a compressible
heat-conducting gas were used in calculations; nonequilibrium was taken into account by the coefficient
of bulk viscosity. As the bulk viscosity increases in the range of realistic values, the disturbance-energy
damping rate in a weakly compressible flow increases approximately by 10%. The increase in the Mach
number enhances the effect of disturbance suppression.
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Introduction. Lately, the development of new methods for influencing the processes of the laminar–
turbulent transition and turbulence generation became a subject of considerable attention. The investigation is
focused on effects earlier neglected by specialists in hydrodynamics. One possible method for acting on a compress-
ible molecular gas flow is based on an additional dissipative effect arising during relaxation of internal molecular
degrees of freedom. This effect is manifested, for instance, in the form of anomalous absorption of ultrasound in
molecular gases, which was first observed and physically interpreted in 1930s (see [1]). In supersonic flows, nonequi-
librium distributions of internal molecular energy often occur naturally, for example, in nozzles, in nonisobaric jets,
and behind oblique shock waves. In the hydrodynamic approximation, this dissipative process corresponds to the
bulk viscosity coefficient in the stress tensor [2]. Mack [3] was the first to introduce bulk viscosity in the equations of
the theory of stability of a compressible boundary layer (CBL). Up to now, however, the influence of bulk viscosity
or, in the general case, relaxation of internal degrees of freedom on CBL stability has not been investigated in
sufficient detail.

Nerushev and Novopashin [4] describe comparative experiments on the laminar–turbulent transition in a
Poiseuille flow in a round tube for nitrogen N2 and carbon oxide CO. The thermodynamic and transport properties
of these gases are almost identical, but the bulk viscosity of CO calculated from the data on ultrasound attenuation
is several times greater than a similarly parameter for N2. It is experimentally established that, other conditions
being identical, the transition Reynolds number Ret in more “viscous” CO is approximately 10% higher than the
respective figure for N2. Such a change in Ret is essential because its order of magnitude is comparable with that
of the practically applied mechanical methods for drag reduction [5]. Although the results obtained are disputable,
at least, they are worthy of theoretical verification and analysis, all the more so because previous investigators
of hydrodynamic stability and laminar–turbulent transition had not considered this effect. Certainly, the data on
ultrasound attenuation suggest that high-frequency fluctuations are more intensively suppressed in a gas with a
higher bulk viscosity. These data, however, involve frequencies of several megahertz, whereas the proportion of
disturbance energy in this part of the spectrum is negligibly small even in supersonic flows.
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Bertolotti in his work [6] partially inspired by the publication [4] was the first to investigate in detail the
impact of nonequilibrium of internal degrees of freedom on the laminar–turbulent transition. The CBL stability
on a semi-infinite plate was considered for atmospheric flight conditions at an altitude H = 12 km with a Mach
number M∞ = 4.5. The selected mode corresponds to the motion of real objects in the case where there is no
dissociation in the near-wall flow but internal degrees of freedom of oxygen and nitrogen molecules are significantly
excited. In calculations, the nonequilibrium of rotational and vibrational degrees of freedom was assumed to occur
naturally. In particular, it was considered that the equilibrium energy distribution is violated because of the
acceleration of air in the nozzle up to the design Mach number if the flight is simulated in a wind tunnel and
because of the flow acceleration behind an oblique shock wave on the blunted leading edge of the plate if the motion
occurs in undisturbed atmosphere. Calculations based on the equations of the linear stability theory showed that
the allowance for bulk viscosity results in an insignificant stabilizing effect reducing the amplitude of the second
instability mode by several percent only. (Note, the definitions of the first and second instability modes in CBL,
first discovered in [3], can be found in [7].) Depending on temperature, the ratio of bulk viscosity µb and dynamic
viscosity µ changed within the range α = µb/µ = 0.6–1.0 typical of air.

A much stronger and unexpectedly destabilizing effect was observed with a significant deviation from equi-
librium, which can no longer be described by the bulk viscosity model. From the calculations of CBL stability for
a wind-tunnel experiment on a flat plate with a sharp leading edge, it follows that the amplitude of low-frequency
disturbances of the first instability mode is approximately 50 times as great as the calculation results based on the
thermal equilibrium assumption. Because of the shift of the upper branch of the neutral stability curve, the region
of the first instability mode proves to be significantly expanded downstream. The calculation results for a blunted
plate moving in an undisturbed atmosphere with allowance for nonequilibrium behind the shock wave yielded a
doubled amplitude of the first mode against the value obtained for equilibrium conditions.

The data presented call for the further study of the effect of thermal nonequilibrium, including artificial
nonequilibrium, on the transition in compressible flows. Note that the model of bulk viscosity in [6] is considered
for significantly lower values of the parameter α than in the experimental work [4], where the value for CO was
estimated as α ' 7.

The CBL destabilization effect was found outside the applicability area of the bulk viscosity model. In [6],
it was attributed to the drastic decrease in the static temperature due to the excess fraction of internal energy
remaining in vibrational degrees of freedom upon rapid expansion. It was assumed that, during a characteristic
flow time, rotational degrees of freedom promptly come into equilibrium with translational degrees of freedom, and
the energy in vibrational degrees of freedom remains frozen. Thus, in this case, the change in CBL stability is not
directly related to the impact of the relaxation process. In addition, as was noted in [6], the increase in disturbances,
even that exponential in the linear approximation, can be stabilized at the nonlinear stage of the transition. At the
same time, Nerushev and Novopashin in [4] studied the nonlinear stage of the transition to the turbulent regime
because the Hagen–Poiseuille flow is stable in the linear approximation.

Within the linear stability theory, the authors of the present paper in their publication [8] estimated the
impact of bulk viscosity on CBL stability on a thin plate with a finite chord. For Mach numbers M 6 10 and values
α 6 30, which is really attained for hydrogen [9]; it was found that the contribution of the additional dissipative
effect to the change in Ret does not exceed several tenths of a percent.

The current scenarios of the processes of the laminar–turbulent transition and turbulence generation imply
that emergence, evolution, and decay of characteristic vortex structures occur at the nonlinear stage. Various
λ-structures (horseshoes and hairpins) are observed in near-wall flows and tube flows, and two-dimensional vortices
extended in the transverse direction are observed in plane shear layers and jets. Therefore, turbulence generation
can be interpreted as a process of the laminar–turbulent transition, randomly repeatable in space and time. This
enables us to assume that the role of bulk viscosity µb at the nonlinear stage of disturbance development can be
estimated by modeling the interaction of a single organized vortex structure with the main (mean) flow. In the
present paper, we consider a simple model of evolution of a transverse vortex structure in the shear layer of a
nonequilibrium molecular gas.

1. Model Selection and Parametrization. 1.1. Bulk Viscosity. As follows from the kinetic theory
of polyatomic gases [10], the method for nonequilibrium description in terms of internal degrees of freedom in
the hydrodynamic approximation depends on the degree of deviation from equilibrium. In addition, allowance
should be made for the relation between relaxation times of various modes of internal molecular dynamics and the
characteristic flow time.
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TABLE 1

Gas µ · 10−5, Pa · sec µ
(s)
b · 10−5, Pa · sec α = µ

(s)
b /µ µ

(r)
b · 10−5, Pa · sec α = µ

(r)
b /µ

N2 1.750 0.348 0.199 0.966 0.552
CO 1.750 12.274 7.014 1.231 0.703
Air 1.820 1.178 0.647 — —

CO2 1.460 54.015 39.997 — —
H2 0.880 34.570 39.280 — —

With relatively low levels of thermal excitation, the energy distribution over molecular degrees of freedom is
characterized by an identical temperature, and the energy exchange between translational and internal degrees of
freedom is taken into account by using the coefficient of bulk viscosity µb in the stress tensor Pij in the Navier–Stokes
equations, which has the following form in the conventional tensor notation:

Pij = pδij − µ
( ∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij

∂uk
∂xk

)
− µbδij

∂uk
∂xk

, p = ρRT. (1)

In (1), xi are Cartesian coordinates, ui are the respective components of the velocity vector, p, ρ, and T are the
static pressure, density, and temperature of the gas, and R is the gas constant. Hereinafter, summation is performed
over repeated indices.

In the general case of polyatomic gases, internal energy is distributed over rotational and vibrational modes.
In this case, the bulk viscosity coefficient is written as [10]

µb = (pR/cv)(γrτr,r + γvτr,v), (2)

where cv is the specific heat at constant volume, γr and γv are the fractions of internal energy in rotational and
vibrational degrees of freedom, and τr,r and τr,v are the relaxation times of the corresponding degrees of freedom.

We consider flows with moderate supersonic velocities and a stagnation temperature T0 ' 1000 K. In this
case, vibrational levels are very weakly excited, and it can be assumed that γv ≈ 0. Then, γr = 2/5, and the
relaxation time of rotational degrees of freedom is expressed as

τr,r = Zrτt, (3)

where τt is the mean free path of molecules in the gas and Zr is the coefficient of energy exchange between rotational
and translational degrees of freedom [10]. The coefficient Zr is equal to the average number of intermolecular
collisions required for the rotational mode to relax to equilibrium.

Available publications on bulk viscosity of molecular gases fail to provide consistent data and often contradict
one another. Earlier results are based on the measurements of ultrasound absorption. In the linear acoustic
approximation, the absorption coefficient is given by formula [9] (see also [1])

æ =
2πω2

ρc2s

[4
3
µ+ µb +

λ(γ − 1)
cp

]
. (4)

Here λ is the thermal conductivity, γ is the ratio of specific heats, cs is the velocity of sound, cp is the specific heat
at constant pressure, and ω is the frequency of an ultrasonic wave.

The values of bulk viscosity µ(s)
b calculated by formula (4) at T = 273 K and p = 105 Pa are listed in Table 1.

The values of the absorption coefficient æ are taken from [9]. Note that the values of æ for N2 and CO coincide
with those published in [4].

At present, the values of µb are determined from electron-optical measurements of the relaxation times τr,r
or exchange coefficients Zr in shock waves and underexpanded jets. Some values of µ(r)

b calculated by formulas (2)
and (3) using experimental data from the references to [9] are also presented in Table 1. These results are in good
agreement with the values of µb calculated using various kinetic models and with later data of other authors (see
the references to [9, 10]).

The difference in values of µ(s)
b and µ

(r)
b for CO by an order of magnitude may be attributed to the specific

sensitivity of acoustic sensors to infinitesimal impurities in the gas [9]. At the same time, a comparison of the
presented values of µ(r)

b shows that, for the given values of p and T , the bulk viscosity of CO is only by one third
higher than the same parameter for N2. If the values of the coefficients Zr from [4] are used in (2) and (3), the thus
calculated bulk viscosity of nitrogen appears to be two times higher than the value of µ(r)

b for CO. Nerushev and
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Novopashin [4] did not comment this disagreement of the original data, although it contradicts the very idea of the
experiment.

The dependence Zr(T ) is calculated by the relations presented in [11], which are in satisfactory agreement
with the experimental data and results of direct numerical modeling (see the references in [10]). According to the
calculation data (see Table 1), as T increases from 273 to 1000 K, the value of α increases almost twofold.

It can be concluded, therefore, that the ratio of bulk viscosity to shear viscosity is α 6 2 for flows of molecular
gases with moderate parameters.

1.2. Flow Parameters. The influence of bulk viscosity on the laminar–turbulent transition and turbulence
generation was estimated by means of a simple model of interaction between a two-dimensional vortex structure and
a plane shear flow. Such structures emerge in plane mixing layers, jets, and wakes of bodies in the flow. The Mach
number in the main flow is assumed to be M 0 < 1. In this case, the compressibility influence on kinematic and
dynamic characteristics of the structure can be neglected, and modeling parameters can be chosen using validated
data on mixing layers [12, 13].

The relative intensity of a vortex structure is given by the parameter β = u′/∆u ≈ v′/∆u (u′ and v′ are
the maximum velocity fluctuations and ∆u is the absolute difference in velocities on the mixing layer boundaries).
According to [12] (see also [13]), β ' 0.2–0.5.

Intermittency in the streamwise direction is given by the relation of the vortex size R0 to the half-distance
between the structures l/2. On the average, for mixing layers and jets, the intermittency coefficient is χ = l/(2R0)
= 2–6. The characteristic relation between the layer thickness δ and the structure size is estimated as δ/R0 ' 2–4
[12, 13].

It follows from experimental data and calculations (see [12] and references to it) that the dynamics of all
disturbances, including large-scale structures, is universal in mixing layer for Reynolds numbers Re = ρ∆uδ/µ > 102.
For this reason, calculations can be performed for moderate Reynolds numbers, thus, avoiding certain computational
difficulties.

In choosing the velocity profile of the carrier jet, the Tollmien solution [13] was applied to the mixing layer
on the jet boundary. In self-similar variables, the streamwise velocity profile in the layer has the form

ūT = u(ϕ)/(2U0) = F ′(ϕ) = 0.0176e−ϕ + 0.6623 cos (
√

3ϕ/2) + 0.2280.eϕ sin (
√

3ϕ/2), (5)

where ϕ = x2/(ax1) and a is an empirical constant characterizing the layer structure. The function F ′(ϕ) is
tabulated in [13]. For ϕ0 = 0.98, profile (5) is conjugated with the jet core, where F ′(ϕ0) = 1 and u(ϕ0) = 2U0.
The value of ϕn = −2.04 corresponds to the external boundary of the jet, where F ′(ϕn) = 0. The linear velocity
profile between these values is given by the formula

ūl = u/(2U0) = (ϕ− ϕn)/(ϕ0 − ϕn). (6)

A comparison of profiles (5) and (6) shows that the root-mean-square deviation

σ =

√√√√ 1
n

n∑
i=1

(ūT (ϕi)− ūl(ϕi))2

does not exceed σ = 0.075. This proves the feasibility of modeling the carrier stream by a linear shear flow.
If the structure center is considered to be located on the mid-streamline and moves with a velocity U0,

we can pass to the system of coordinates where it is at rest. The Rankine vortex of radius R0 with a constant
vorticity density Ω0 is used as an initial state of the vortex structure. Figure 1 shows the thus symmetrized initial
flow in a model cell. The calculations are performed for the following values of the parameters: α = µb/µ = 0–2,
β = Ω0R0/(2U0) = 0.2–0.5, χ = l/(2R0) = 2–6, M 0 = U0/

√
γRT0 = 0.2–0.8, Re = 2U0R0ρ0/µ = 40–100, and the

Prandtl number Pr = µcp/λ = 0.74.
2. Governing Equations and Method of the Solution. 2.1. Initial Boundary-Value Problem. The

structure evolution in the model cell is described by a system of full Navier–Stokes equations for a compressible
viscous heat-conducting gas. Calculations make it possible to analyze energy and momentum exchange between the
disturbance and the main flow, which occurs both at the loss of stability and in the course of turbulence generation.
The reference values chosen for normalization are the initial diameter of the structure 2R0, the absolute value of
velocity U0, the density ρ0, the temperature T0 on the upper and lower boundaries of the model cell, the time
τ0 = 2R0/U0, and the pressure p0 = ρ0U

2
0 .
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Fig. 1. Flow pattern at the initial time.

In dimensionless variables, the system of equations is written as
∂ρ

∂t
+
∂ρui
∂xi

= 0,

ρ
(∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+

1
Re

∂2ui
∂x2

j

+
1

Re

(
α+

1
3

) ∂2uj
∂xi ∂xj

,

ρ
(∂T
∂t

+ ui
∂T

∂xi

)
= (γ − 1)M 2

0

dp

dt
+

1
Re Pr

∂2T

∂x2
i

+
(γ − 1)M 2

0

2 Re

( ∂ui
∂xj

+
∂uj
∂xi

)2

+ (γ − 1)
(
α− 2

3

)M 2
0

Re

(∂ui
∂xi

)2

, (7)

γM 2
0p = ρT,

d

dt
=

∂

∂t
+ ui

∂

∂xi
, i, j = 1, 2.

On the cell boundaries, the following conditions are satisfied at all times: for x1 = ±χ/2 and x2 ∈ [−χ/2;χ/2],

u1(t, χ/2, x2) = u1(t,−χ/2, x2), u2(t, χ/2, x2) = −u2(t,−χ/2, x2),

ρ(t, χ/2, x2) = ρ(t,−χ/2, x2), p(t, χ/2, x2) = p(t,−χ/2, x2);
(8)

for x2 = ±χ/2 and x1 ∈ [−χ/2;χ/2],

u1(t, x1, χ/2) = −u1(t, x1,−χ/2), u2(t, x1, χ/2) = u2(t, x1,−χ/2),

ρ(t, x1, χ/2) = ρ(t, x1,−χ/2), p(t, x1, χ/2) = p(t, x1,−χ/2).
(9)

The carrier flow in the calculation domain is specified as an exact stationary solution of system (7) with
boundary values depending on x1 and x2 similarly to (8) and (9). In dimensionless variables, the profiles of velocity,
temperature, and density are written as

U2(x2) =
2x2

χ
, T (x2) = 1 +

(γ − 1)M 2
0Pr

2

(
1− 4x2

2

χ2

)
, Θ(x2) = T−1(x2). (10)

At the same time, as follows from (7) and from the equation of state, the pressure in such a flow is constant over
the space: P = 1/(γM 2

0).
The initial conditions for the velocity field are given in the form

u1(0, x1, x2) =
{

2x2/χ+ βx2/(2r2), r > 1/2,
2x2/χ+ 2βx2, r 6 1/2,

u2(0, x1, x2) =
{
−βx1/(2r2), r > 1/2,
−2βx1, r 6 1/2,

(11)

where r =
√
x2

1 + x2
2. The initial distributions of thermodynamic quantities correspond to the conditions of an

undisturbed carrier flow (10).
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2.2. Integral Equations of Balance. In calculating the nonlinear interaction of the disturbance with the
main flow, integral equations of balance between bilinear fluctuating characteristics and the kinetic energy of the
disturbance are used. To derive these equations within the scope of this model problem, instantaneous values of
hydrodynamic quantities are presented as

ui = Ui + u′i, p = P + p′, ρ = Θ + ρ′. (12)

In (12), a stationary solution Ui, P , and Θ of the system of Navier–Stokes equations (carrier flow) and the imposed
disturbance satisfying conditions (8), (9) are singled out. The carrier flow is assumed to be one-dimensional and
depend only on the transverse coordinate x2, i.e., U1 = U1(x2). It is considered that the velocity disturbance in the
vicinity of the calculation cell satisfies the conditions

u′1(t, x1, x2) = u′1(t,−x1, x2), u′2(t, x1, x2) = −u′2(t,−x1, x2),

u′1(t, x1, x2) = −u′1(t, x1,−x2), u′2(t, x1, x2) = u′2(t, x1,−x2).
(13)

By substituting (12) into system (7) and by eliminating terms related to the stationary solution, we obtain
the following equations for disturbances with unrestricted amplitudes:

∂ρ′

∂t
+ ui

∂ρ

∂xi
+ ρ

∂u′i
∂xi

= 0; (14)

ρ
(∂u′i
∂t

+ u′j
∂u′i
∂xj

+ Uj
∂u′i
∂xj

+ u′j
∂Ui
∂xj

)
+ ρ′Uj

∂Ui
∂xj

= − ∂p
′

∂xi
+

1
Re

∂2u′i
∂x2

j

+
1

Re

(
α+

1
3

) ∂2u′j
∂xi ∂xj

, i, j = 1, 2. (15)

By multiplying Eq. (15) by the fluctuating component of velocity u′k and performing symmetrization over indices,
we obtain the equation for bilinear fluctuations

∂

∂t
(ρu′iu

′
k) +

∂

∂xj
(ρu′ju

′
iu
′
k) +

∂

∂xj
(ρu′iu

′
kUj) + (ρu′j + ρ′Uj)

(
u′k

∂Ui
∂xj

+ u′i
∂Uk
∂xj

)

= −
(
u′k

∂p′

∂xi
+ u′i

∂p′

∂xk

)
+

1
Re

(
u′k

∂2u′i
∂x2

j

+ u′i
∂2u′k
∂x2

j

)
+

1
Re

(
α+

1
3

)(
u′k

∂

∂xi
+ u′i

∂

∂xk

)∂u′j
∂xj

. (16)

In the left side of Eq. (16), terms in the divergent form are found using the equation of continuity (14). By
integrating equation (16) over the calculation domain with allowance for conditions (8), (9), and (13), we obtain
the integral equation for bilinear fluctuating characteristics

d

dt

∫
Ω

(ρu′iu
′
k) dΩ = −

∫
Ω

ρu′j

(
u′i
∂Uk
∂xj

+ u′k
∂Ui
∂xj

)
dΩ +

∫
Ω

p′
(∂u′k
∂xi

+
∂u′i
∂xk

)
dΩ

− 2
Re

∫
Ω

( ∂u′i
∂xj

∂u′k
∂xj

)
dΩ− 1

Re

(
α+

1
3

)∫
Ω

(∂u′k
∂xi

+
∂u′i
∂xk

)∂u′j
∂xj

dΩ, i, j, k = 1, 2. (17)

By convolving Eq. (17) over indices for i = k, we obtain an integral equation of balance for the kinetic energy of
disturbances

dE

dt
≡ d

dt

∫
Ω

ρu′2i
2

dΩ = J1 + J2 −
1

Re
(J3 + αJ4). (18)

The term

J1 = −
∫
Ω

ρu′iu
′
j

∂Ui
∂xj

dΩ

describes the energy exchange between the disturbance (structure) and the main flow. The integral

J2 =
∫
Ω

p′
∂u′i
∂xi

dΩ
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can be interpreted as the work under fluctuating compression (expansion) of the gas. The integrals

J3 =
∫
Ω

[( ∂u′i
∂xj

)2

+
1
3

(∂u′i
∂xi

)2]
dΩ, J4 =

∫
Ω

(∂u′i
∂xi

)2

dΩ

correspond to dissipation processes.
It must be noted that integrals on the model-cell boundaries, emerging in deriving the integral equations,

rigorously vanish for the chosen boundary conditions.
If averaging over the cell area |Ω|

〈G〉 =
1
|Ω|

∫
Ω

GdΩ

is introduced, then Eq. (18) can be treated as an equation for averaged characteristics within a constant factor.
In the expressions above, the signs of the integrals J1 and J2 are not defined, whereas J3 and J4 are

nonnegative. It follows from Eq. (18) that the bulk and dynamic viscosities promote disturbance suppression in the
case of nonlinear interaction of the structure with the main flow.

It can be noted that Eq. (18), after a certain modification of the main flow profile and boundary conditions,
makes it possible to formulate a variational problem for estimating the critical transition Reynolds number Recr,
which, for dE/dt = 0, is calculated as the minimum of the functional

Recr = min
[J3 + αJ4

J1 + J2

]
.

As follows from (18), for each value of Re < Recr, the dissipative terms J3 and J4 prevail, and the derivative
dE/dt < 0 and all disturbances decay with time. Consequently, the increase in bulk viscosity (or in the parameter α)
really shifts the transition to higher values of Recr, but a quantitative result can be obtained only by solving the
variational problem.

2.3. Difference Scheme. In numerical calculations, system (7) is approximated by a weighting finite-difference
scheme with splitting in terms of spatial coordinates and physical processes [14]. In the operator form, the scheme
is written as

(xn+1 − xn)/τ + Lh[δxn+1 + (1− δ)xn] = F nh . (19)

Here xn = (ρnij , u
n
1,ij , u

n
2,ij , T

n
ij) is the grid vector function of the solution in the nth time layer, h is the step of the

space grid, τ is the time step, and δ is the weighting parameter. The operator Lh includes symmetric second-order
approximations of the first and second spatial derivatives along each spatial coordinate. The operator F nh is treated
as a vector of right sides and is composed of second-order approximations symmetric about each coordinate of mixed
derivatives from equations of momenta and the terms of the dissipative function from the energy equation. On a
regular grid with a step h along both coordinates, scheme (19) approximates system (7) with an order O(τ + h2)
and is absolutely stable for the weighting parameter δ > 1/2 [14].

In the calculation domain, the grid contained 31× 31 = 961 nodes with a step h = 0.1. The time step was
τ = 0.01. The disturbance evolution was observed until it reached the cell boundary, which required up to 600 time
steps.

2.4. Test Calculations. The effect of additional disturbance suppression due to bulk viscosity was preliminar-
ily estimated as several percent. Therefore, the calculation errors have to be lower than the third order of smallness.
To reach such a result, the difference scheme was always carefully tested. In particular, scheme (19) had to retain
a stationary carrier flow (10) in the absence of an imposed disturbance. At the times (600–800)τ , deviations from
the stationary profiles of hydrodynamic quantities practically did not exceed the rounding error, remaining at the
level εs = 10−6.

In addition, in the absence of the carrier flow, the difference problem (19) was solved with the initial-
boundary conditions (8), (9), and (11). By virtue of the problem symmetry, the velocity-field divergence is zero.
On the assumption of an isochoric process with ρ = const, the continuity equation is satisfied identically. The
evolution of the initial disturbance in the form of the Rankine vortex is described by the well-known analytical
solution for a viscous incompressible fluid [2]. According to the introduced notation, the expression for the vorticity
field has the form
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ω(r, t) =
βχRe
t

exp
(
− r2 Re

4t

) 1/2∫
0

exp
(
− ξ2 Re

4t

)
I0

(rRe
2t

ξ
)
ξ dξ, (20)

where I0(ζ) is the zero-order Bessel function of the second kind of the imaginary argument and r =
√
x2

1 + x2
2 is

the distance from the vortex center to an arbitrary point of the calculation cell.
In the numerical solution, the grid vorticity function is calculated on the basis on the symmetrical finite-

difference approximation

ωnij =
χ

2

(un1, i,j−1 − un1, i,j+1

2h
−
un2, i−1,j − un2, i+1,j

2h

)
. (21)

In the range of examined parameters used, the maximum difference between the calculated values (21) and
the analytical solution (20) in all grid nodes did not exceed the value εd = 5 · 10−3 in the time interval up to 600τ .

For testing the scheme accuracy for ρ 6= const, the coincidence between the time evolution of vorticity at the
center of the Rankine vortex in compressible and incompressible viscous fluids was used. The respective analytical
solution for the vorticity is given by the formula [2]

ω(0, t) = 2βχ(1− exp (−Re /(16t))).

As the calculation shows, in this case, the maximum difference of the numerical solution at the center of the model
cell from this analytical expression does not exceed the value εd = 5 · 10−3 in the time interval of up to 600τ either.

The test results confirm that the numerical model developed ensures sufficient accuracy of the problem
solution.

3. Calculation Results and Their Discussion. The energy exchange between the carrier flow and
disturbances of various space and time scales is one of the basic processes both in the laminar–turbulent transition
and in developed turbulence. To estimate the influence of bulk viscosity on fluctuating characteristics of the model
flow, we investigated the time evolution of absolute values of the Reynolds stresses

σ12(t) =

χ/2∫
−χ/2

χ/2∫
−χ/2

|ρu′1u′2| dx1 dx2 (22)

and the kinetic energy of disturbances

E(t) =
1
2

χ/2∫
−χ/2

χ/2∫
−χ/2

ρ(u′21 + u′22 ) dx1 dx2. (23)

The integrands in (22) and (23) were calculated from instantaneous flow characteristics obtained from the numerical
solution of system (7) using the difference scheme (19). The integrals were calculated by the rectangle formula on
a regular grid with a step h = 0.1.

An example of calculating the dependences E(t) for α = 0–2 is shown in Fig. 2a. The dependences σ12(t)
have a similar character. Figure 2b shows the curves σ12(α) at various times θ. On averaging over the same time
intervals in the form,

〈F (α)〉 = θ−1

θ∫
0

F (t, α) dt

the dependences 〈E(α)〉 and 〈σ12(α)〉 become less steep than those in Fig. 2b, although retaining their character.
The order of magnitude of the time interval up to θ = 5 corresponds to the average lifetime of a large structure.
At this moment, in the calculations, the disturbance level on the boundary reached the value of the numerical
calculation error, after which the computation was stopped.

As follows from the presented plots, as the coefficient of bulk viscosity grows, the kinetic energy of distur-
bances and the Reynolds stresses decay more intensively. The maximum stratification of the curves E(t) and the
most drastic change in σ12(α) are observed at θ = 4–5. In order to estimate the effect of bulk viscosity on the
average fluctuating characteristics, the relative changes

∆F = |〈F (α)〉 − 〈F (0)〉|/〈F (0)〉 (24)
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Fig. 2. Effect of bulk viscosity disturbance evolution (Re = 100, Pr = 0.74, M 0 = 0.5, β = 0.2,
χ = 3, and γ = 1.4): (a) kinetic energy versus time for α = 0 (1), 0.5 (2), 1 (3), 1.5 (4), and 2 (5);
(b) absolute values of the Reynolds stresses σ12 versus the parameter α (or µb) at different times θ.
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Fig. 3. Generation of kinetic energy of disturbances: (a) versus time [the curves are constructed
on the basis of the calculation results of Eq. (18); the points refer to the calculation results of
Eqs. (23) and (25)]; (b) versus bulk viscosity at different times θ (the regime parameters and
notation employed are the same as in Fig. 2.)

for the time interval 0 6 θ 6 5 were calculated. For the calculation conditions corresponding to Fig. 2, both for the
kinetic energy 〈E(α)〉 and for the absolute value of the Reynolds stresses 〈σ12(α)〉, the characteristic ∆F changes
in the range from 0.012 to 0.096 for α = 0.5–2.0. As the Mach number increases, the both limits proportionately
grow, and the upper limit reaches the value ∆F ' 0.2 for M 0 = 2. However, for this value of M 0, the above-chosen
parametrization of the model flow, and the model of bulk viscosity itself, can prove useless.

In the mixing layer, the contribution of organized vortices to the total Reynolds stresses and kinetic energy
of fluctuations is known to be approximately 40% [12]. It is obvious, at the same time, that molecular dissipation
suppresses small-scale disturbances much more intensively than large-scale disturbances considered here. Proceeding
from this fact, the calculated changes in the value of ∆F (∆F 6 0.1) may be extended to the entire spectrum of
disturbances.
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On the basis of the discrete approximation of Eq. (18), the time evolution of the kinetic energy dE(t)/dt is
calculated. The respective plots are shown in Fig. 3. In order to test the calculation accuracy, the finite-difference
approximation

dE

dt
' E(t+ τ)− E(t− τ)

2τ
(25)

is calculated parallel to the calculations by Eq. (18). Scattering of the data obtained by two methods does not
exceed 1%. It is obvious that, with increasing parameter α, the absolute value of the kinetic energy dissipation rate
increases. The dissipation rate also grows with time. The time-averaged dependences 〈dE/dt〉 (Fig. 3a) have lower
gradients than the curves in Fig. 3b; at the same time, the character of the dependences remains unchanged. As
the Mach number grows, the influence of bulk viscosity on the dissipation rate becomes stronger. We can state that
the relative increments for the averaged values of 〈dE/dt〉 calculated from relation (18) are within the same limits
as for the kinetic energy of disturbances.

An analysis of the calculation results shows that generation of kinetic energy of fluctuations in this model
problem is always negative. The absence of a mechanism for positive generation of disturbance energy, for instance,
such as expansion of quasi-streamwise vortices connecting large structures in the mixing layer [12], is a drawback of a
simplified two-dimensional model preventing its application to immediate estimation of the effect of bulk viscosity µb
on the critical transition Reynolds number.

Conclusions. On the basis of a simple model, the influence of bulk viscosity on the nonlinear interaction of
a finite-amplitude vortex disturbance with a carrier shear flow is studied. The range of parameters of the model flow
corresponds to the real values for molecular gases. Numerical modeling results seem to evidence a stabilizing effect
of bulk viscosity on the dynamics of disturbances. It is shown that, in a weakly compressible flow with M 0 < 1,
as bulk viscosity increases in the range 0 6 µb 6 2µ, the relative decrease in the absolute value of the Reynolds
stresses and kinetic energy of disturbances increase and approach 10% for µb = 2µ. The results obtained are not
final and require further investigation based on improved and more perfect models. It should be noted, at the same
time, that such a suppression of fluctuating intensity can be achieved by means of well-known mechanical methods
for drag reduction, for instance, by ribleting surfaces in the flow [5]. Therefore, the results point to a hypothetical
possibility of drag control in compressible flows by regulating bulk viscosity of the gas. In particular, it can be done
via laser pumping of vibrational levels of gas molecules.

This work was partly supported by the Russian Foundation for Fundamental Research (Grant No. 01-01-
00827).
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